Efficient Trade Space Exploration

Alfred Nash, Jet Propulsion Laboratory, California Institute of Technology © 2020 California Institute of Technology.

Government sponsorship acknowledged.

SECESA 2020

Session 5

30 September - 2 October 2020

Table of Content

- 1. Once upon a time
- 2. One day
- 3. Because of that
- 4. Until
- 5. Until (Cont'd)
- 6. Finally
- Finally (Cont'd)

there were challenges in trade space exploration it was realized the boundary conditions mattered most detail was reduced efficiency increased by a factor of nine broader, more informative options were explored efficiency = f(detail reduction, boundary condition focus) applied to science missions and instruments, and...?

Once upon a time...

The purpose of the NASA Pre-Phase A project life cycle phase is,

"To produce a broad spectrum of ideas and alternatives for missions from which new programs/projects can be selected. Determine feasibility of desired system, develop mission concepts, draft system-level requirements, assess performance, cost, and schedule feasibility; identify potential technology needs, and scope."

Two of the principal challenges in efficient trade space exploration are to quickly

evaluate options

and

obtain stakeholder understanding

Then, one day...

It was realized that the stakeholders needed to understand the couplings of the three principal boundary conditions

Because of that...

the level of
evaluation and information
was simplified to the
element level
using element level
analogy and parametric
databases and models

Spacecraft Element Analogy Name	
Unit Cost (\$M)	
TECHNICAL RESOURCE SUMMARY	
ACCOMMODATION	ACCOMMODATION
CAPABILITIES	REQUIREMENTS
HxWxL Dimensions (m)	HxWxL Dimensions (m)
P/L Mass (kg)	Mass (kg)
P/L (Peak) Power (W)	
P/L (Average) Power (W)	
P/L Data Rate (Mbps)	
P/L Data Storage (GB)	
PERFORMANCE SUMMARY	
ACS Pointing	Knowledge (deg)
	Control (deg)
	Stability (deg)
Propulsion	Delta V (m/s)
Telecomm	Uplink Band
	Uplink Rate (kbps)
	Downlink Band
	Downlink Rate (Mbps)

Until...

efficiency increased by a factor of nine (9 hours \rightarrow 1 hour per option)

$$Efficiency = \frac{N_S \times W_S}{N_S \times W_S + N_{NS} \times W_{NS}}$$

in large part because O(N) boundary conditions are faster to check, especially guided by allocation rules of thumb

than O(N²-N) internal self consistencies are to check, as fun as those are to work on

Until... (cont'd)

a *broader*, and *more informative*, set of options were being explored

DO NOT NARROWLY EXPLORE HERE YOU WON'T FIND SELECTIBILTY

Finally...

SECESA 📛

<u>Computational</u> and <u>Cognitive</u> Efficiencies are Enhanced by <u>Reduction</u> in Detail <u>and</u> simultaneously tracking against all <u>Three Principal Boundary Conditions</u>

Finally... (cont'd)

These processes and tools have to date been applied to Astrophysics, Earth Science, and Planetary <u>Science</u>

<u>Mission</u> and <u>Instrument</u> concepts, but the general approach should be applicable to a broad range of system concepts.

